34 research outputs found

    Temporal response to harmonic driving in electroconvection

    Full text link
    The temporal evolution of the spatially periodic electroconvection (EC) patterns has been studied within the period of the driving ac voltage by monitoring the light intensity diffracted from the pattern. Measurements have been carried out on a variety of nematic systems, including those with negative dielectric and positive conductivity anisotropy, exhibiting "standard EC" (s-EC), those with both anisotropies negative exhibiting "non-standard EC" (ns-EC), as well as those with the two anisotropies positive. Theoretical predictions have been confirmed for stationary s-EC and ns-EC patterns. Transitions with Hopf bifurcation have also been studied. While traveling had no effect on the temporal evolution of dielectric s-EC, traveling conductive s-EC and ns-EC patterns exhibited a substantially altered temporal behavior with a dependence on the Hopf frequency. It has also been shown that in nematics with both anisotropies positive, the pattern develops and decays within an interval much shorter than the period, even at relatively large driving frequencies.Comment: 19 pages, 5 figure

    Persistent global power fluctuations near a dynamic transition in electroconvection

    Full text link
    This is a study of the global fluctuations in power dissipation and light transmission through a liquid crystal just above the onset of electroconvection. The source of the fluctuations is found to be the creation and annihilation of defects. They are spatially uncorrelated and yet temporally correlated. The temporal correlation is seen to persist for extremely long times. There seems to be an especially close relation between defect creation/annihilat ion in electroconvection and thermal plumes in Rayleigh-B\'enard convection

    Morphological evaluation of experimental autologous rectus fascia sheath vascular grafts used for arterial replacement in a dog model

    Get PDF
    Although experimental autologous patch or tubular conduit vascular grafts made from the internal rectus fascia sheath (IRFS) have been reported in the literature, thorough morphological evaluation and verification of the histological arterialisation of such grafts are lacking. Four purpose-bred Beagle dogs were utilised to create eight arterial internal rectus fascia sheath (ARFS) grafts implanted between bisected ends of the external iliac arteries. Four out of the eight ARFS grafts were patent after three months. Haematoxylin-eosin and Azan staining verified that the grafts gained a vessel-like layered structure with the presence of large amounts of collagen fibres. Although the inner surface of the intact IRFS was originally covered with claudin-5-negative and pancytokeratin-positive mesothelial cells in control samples, the internal cells of the ARFS grafts became claudin-5 positive and pancytokeratin negative like in intact arteries. Spindle-shaped cells of the wall of ARFS grafts were α-smooth muscle actin (α-SMA) positive just like the smooth muscle cells of intact arteries, but α-SMA immunoreactivity was negative in the intact IRFS. According to these findings, the fibroblast cells of the ARFS graft have changed into myofibroblast cells. The study has proved that ARFS grafts may be used as an alternative in arterial replacement, since the graft becomes morphologically and functionally similar to the host vessel via arterialisation

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    A kinematic model of stick‐insect walking

    No full text
    Abstract Animal, and insect walking (locomotion) in particular, have attracted much attention from scientists over many years up to now. The investigations included behavioral, electrophysiological experiments, as well as modeling studies. Despite the large amount of material collected, there are left many unanswered questions as to how walking and related activities are generated, maintained, and controlled. It is obvious that for them to take place, precise coordination within muscle groups of one leg and between the legs is required: intra‐ and interleg coordination. The nature, the details, and the interactions of these coordination mechanisms are not entirely clear. To help uncover them, we made use of modeling techniques, and succeeded in developing a six‐leg model of stick‐insect walking. Our main goal was to prove that the same model can mimic a variety of walking‐related behavioral modes, as well as the most common coordination patterns of walking just by changing the values of a few input or internal variables. As a result, the model can reproduce the basic coordination patterns of walking: tetrapod and tripod and the transition between them. It can also mimic stop and restart, change from forward‐to‐backward walking and back. Finally, it can exhibit so‐called search movements of the front legs both while walking or standing still. The mechanisms of the model that enable it to produce the aforementioned behavioral modes can hint at and prove helpful in uncovering further details of the biological mechanisms underlying walking

    First characterisation of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS

    No full text
    Corylus maxima Mill. (Betulaceae) leaves have been used in traditional medicine both internally and externally, nevertheless phytochemical exploration of the plant remains incomplete. In this study, the in vitro antioxidant activity and polyphenolic composition of the ethyl acetate and methanolic extracts of C. maxima leaves and bark are reported for the first time. The radical scavenging activities of the extracts were investigated by the ABTS and DPPH assays. All the extracts of C. maxima possessed notable antioxidant activity. By mean of a HPLC-DAD-ESI-TOF and a HPLC-DAD-ESI-MS/MS method, altogether twenty-two phenolics were tentatively characterised: one flavan derivative (. 1), seven flavonol derivatives (. 4, 6, 12, 13, 16, 20 and 21) and fourteen diarylheptanoids (. 2, 3, 5, 7-. 11, 14, 15, 17-. 19 and 22). The amount of the two main flavonoids - myricetin-3-. O-rhamnoside (. 6) and quercetin-3-. O-rhamnoside (. 13) - and two diarylheptanoids - oregonin (. 3) and hirsutenone (. 15) - in the extracts were determined by a validated HPLC-ESI-MS/MS method in multiple reaction monitoring (MRM) mode. Our results showed that C. maxima could be considered as a valuable source of pharmacologically important natural products that might contribute to the revaluation of the phytotherapeutical potential of the plant
    corecore